Exam I, MTH 320: Abstract Algebra I, Spring 2012

Ayman Badawi

QUESTION 1. a) Let $G=(Z,+)$. We know that $H=<6>\cap<16>$ is a cyclic subgroup of G. Find all generators of H.
b) Let $F=Z_{5} \bigoplus U(8)$. Is F cyclic? if yes, then how many generators does F have? If no, then explain.
c) Let $F=\left[\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right] \in M_{2}\left(Z_{8}\right)$. If possible find F^{-1} (i.e. is there a matrix F^{-1} such that $F F^{-1}=I_{2}$.) If not possible, then explain
d) Let $F=\left[\begin{array}{ll}3 & 5 \\ 1 & 5\end{array}\right] \in M_{2}\left(Z_{8}\right)$. If possible find F^{-1}. If not possible, then explain
e) Given that G is a group with 16 elements. Suppose there exists an element $a \in G$ such that $a^{8} \neq e$. Prove that G is an abelian group.
f) Let $F=<a>$ be a cyclic group of order 24 and let $H<a^{9}>$ be a subgroup of G. Find $|H|$. We know that H is cyclic, and hence find all generators of H.
h) Let G be a group with 27 elements. Given that G has exactly 2 elements of order 3, exactly 6 elements of order 9. Prove that G is an abelian group.

QUESTION 2. Let G be an abelian group. Given $a, b \in G$ such that $|a|=20$ and $|b|=42$. Find $\left|a^{4} * b^{2}\right|$. Explain your answer.
a) Let $G=<a>$ be a cyclic group of order 12 and let H be a subgroup of G of order 4 . Find all distinct left cosets of H .
b) Find the elements of A_{3}, then find all distinct left cosets of A_{3}.
c) Let $M=\left(\begin{array}{lll}2 & 3 & 5\end{array}\right) o\left(\begin{array}{llll}2 & 6 & 5 & 1\end{array}\right)$. Find $|M|$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam II, MTH 320: Abstract Algebra I, Spring 2012

Ayman Badawi

QUESTION 1. a) We know that A_{5} is a simple group. However, prove that A_{5} does not have a normal subgroup of order 12.
b) Prove that A_{5} does not have a cyclic subgroup of order 6 .

QUESTION 2. (You may use the fact I proved in the class: Every abelian group of order P^{2} (P is prime) is either $Z_{P^{2}}$ or $Z_{P} \oplus Z_{P}$). Let G be an abelian group such that $|G|=P^{3}$ (P is prime). Given G has a cyclic subgroup of order P^{2} but no element in G is of order P^{3}. Prove that G is isomorphic to $Z_{P} \oplus Z_{P^{2}}$.
b) Given G is a group such that $|G|=m p^{n}$, where p is prime, n, m positive integers, and $\operatorname{gcd}(p, m)=1$. Given H is a normal subgroup of G such that $|H|=p^{n}$. Assume that F is a subgroup of G such that $|F|=p^{k}$ for some positive integer $k \leq n$. Prove that $F \subseteq H$.
c) Given G is an abelian group such that $|G|=m p^{n}$, where p is prime, n, m positive integers, and $\operatorname{gcd}(p, m)=1$. Given H is s subgroup of G such that $|H|=p^{n}$. Assume that F is a subgroup of G such that $|F|=p^{n}$. Prove that $H=F$.

QUESTION 3. a) Prove that $U(8)$ is isomorphic to $Z_{2} \oplus Z_{2}$
b) Is $U(32)$ isomorphic to Z_{16} ? Explain briefly
c) Given $U(4) \oplus U(9)$ is isomorphic to $Z_{a} \oplus Z_{b} \oplus Z_{c} \oplus Z_{d}$. Find a, b, c, d; note that a, b, c, d are positive integers and each is bigger than one. (If you need to explain, then make it very brief).
d) Construct a group homomorphism say $F: Z_{12} \Rightarrow Z_{3}$ such that F is not the trivial group homomorphism. Find $\operatorname{Range}(F)$ and $\operatorname{Ker}(F)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 320, ABSTRACT ALGEBRA , Final Exam

Ayman Badawi

QUESTION 1. Let F be a non-cyclic abelian group with 126 elements. Up to group isomorphism find all such groups. Explain Briefly.

QUESTION 2. Let G be a group with 33 elements such that G has a normal subgroup H with 11 elements. Suppose there is an element $b \in G$ and $b \notin H$ such that $|b| \neq 3$. Prove that G is an abelien group. Up to isomorphism, find all such groups.

QUESTION 3. Let D be a group with 70 elements. Given there are two elements say a and b in D such that $a * b=b * a,|a|=7$, and $|b|=5$. Prove that D has exactly one subgroup of order 35 .

QUESTION 4. Construct a group homomorphism say F from $S_{3} \oplus Z_{5}$ into Z_{30} such that $|\operatorname{Image}(F)|=5$. Find $\operatorname{Ker}(F)$.

QUESTION 5. a) Let $F=Z_{6} \oplus Z_{8}$.
(i) Is there an element in F of order 48? if yes, then find it. If no, then explain
(ii) Is there an element in F of order 24 ? if yes, then find it. If no, then explain
(iii) If possible, construct a cyclic subgroup of F with 12 elements.
(iv) If possible, construct a non-cyclic subgroup of F with 12 elements.

QUESTION 6. b) Let $F=\left(\begin{array}{lll}1 & 4 & 5\end{array}\right) 0(2134) \in S_{5}$. Find $|F|$.
c) Is (13) $0(321) 0(174) \in A_{7}$? Explain

QUESTION 7. Give me an example a group D such that D is not abelian, but D has a cyclic normal subgroup H where D / H is also cyclic .

QUESTION 8. Let $F=U(4) 4 \oplus U(8)$. Then $H=\{(1,1),(1,3)\}$ is a subgroup of F. Find all distinct left cosets of H

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 320, ABSTRACT ALGEBRA , Final Exam

Ayman Badawi

QUESTION 1. Let F be a group with 63 elements. Given $a \in F, a \neq e$, and $a^{38}=a^{10}$.

1) Find $|a|$.
2) Find $\left|a^{3}\right|$

QUESTION 2. Let D be an abelian group with 99 elements. Prove that D has exactly one subgroup of order 9 .

QUESTION 3. Let D be an abelian group with 40 elements such that D has exactly two subgroups of order 10 . (Up to isomorphism) find the group D.

QUESTION 4. Is there a group homomorphism say V from $U(16)$ into Z_{16} such that $\operatorname{Image}(V)=\{0,2,4,6,8,10,12,14\}$? If yes, construct V. If no, explain clearly.

QUESTION 5. Let H be a group with 30 elements. Given $a, b \in H$ such that $|a|=3,|b|=5$ and $a b=b a$. Prove that H has exactly one subgroup of order 15 .

QUESTION 6. a) Let $F=Z_{4} \oplus Z_{9}$. Is there an element in F of order 6? if yes find it.
b) Let $F=\left(\begin{array}{ll}1 & 4\end{array}\right) 0(2134) \in S_{5}$. Find $|F|$.
c) Is (13) $0(32) 0(174) \in A_{7}$? Explain

QUESTION 7. Give me an example of a group D such that D is not cyclic, but D has a cyclic normal subgroup H where D / H is also cyclic .

QUESTION 8. Let $F=Z_{2} \oplus U(8)$. Then $H=\{(0,0),(1,7)\}$ is a subgroup of F. Find all distinct left cosets of H

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

